Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 106(4): 1099-1109, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586254

RESUMO

NEW FINDINGS: What is the central question of this study? Can resistance training with and without blood flow restriction improve redox balance and positively impact the autonomic cardiac modulation in chronic kidney disease patients? What is the main finding and its importance? Resistance training with and without blood flow restriction improved antioxidant defence (paraoxonase 1), decreased the pro-oxidative myeloperoxidase, improved cardiac autonomic function and slowed the decrease in renal function. We draw attention to the important clinical implications for the management of redox balance and autonomic cardiac function in chronic kidney disease patients. ABSTRACT: Patients with chronic kidney disease (CKD) are prone to cardiovascular diseases secondary to abnormalities in both autonomic cardiac function and redox balance [myeloperoxidase (MPO) to paraoxonase 1 (PON1) ratio]. Although aerobic training improves both autonomic balance and redox balance in patients with CKD, the cardioprotective effects of resistance training (RT), with and without blood flow restriction (BFR), remain unknown. We aimed to compare the effects of RT and RT+BFR on antioxidant defence (PON1), pro-oxidative status (MPO), cardiac autonomic function (quantified by heart rate variability analysis) and renal function. Conservative CKD (stages 1 to 5 who do not need hemodialysis) patients (n = 105, 33 female) of both sexes were randomized into three groups: control (CTL; 57.6 ± 5.2 years; body mass index, 33.23 ± 1.62 kg/m2 ), RT (58.09 ± 6.26 years; body mass index 33.63 ± 2.05 kg/m2 ) and RT+BFR (58.06 ± 6.47 years; body mass index, 33.32 ± 1.87 kg/m2 ). Patients completed 6 months of RT or RT+BFR on three non-consecutive days per week under the supervision of strength and conditioning professionals. Training loads were adjusted every 2 months. Heart rate variability was recorded with a Polar-RS800 and data were analysed for time and frequency domains using Kubios software. The redox balance markers were PON1 and MPO, which were analysed in plasma samples. Renal function was estimated as estimated glomerular filtration rate. The RT and RT+BFR decreased pro-oxidative MPO (RT, ∼34 ng/ml and RT+BFR, ∼27 ng/ml), improved both antioxidant defence (PON1: RT, ∼23 U/L and RT+BFR, ∼31 U/L) and cardiac autonomic function (R-R interval: RT, ∼120.4 ms and RT+BFR, ∼117.7 ms), and slowed the deterioration of renal function (P < 0.0001). Redox balance markers were inversely correlated with heart rate variability time-domain indices. Our data indicated that both training models were effective as non-pharmacological tools to increase the antioxidant defences, decrease oxidative stress and improve the cardiac autonomic function of CKD patients.


Assuntos
Treinamento Resistido , Arildialquilfosfatase , Feminino , Humanos , Rim/fisiologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Prognóstico , Fluxo Sanguíneo Regional
2.
Int J Sports Med ; 42(3): 283-290, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32947637

RESUMO

Aging muscle is prone to sarcopenia and its associated telomere shortening and increased oxidative stress. Telomeres are protected by a shelterin protein complex, proteins expressed in response to DNA damage. Aerobic exercise training has shown to positively modulate these proteins while aging, but the effects of resistance training are less clear. This investigation was to examine the role of dynamic and isometric RT on markers of senescence and muscle apoptosis: checkpoint kinase 2, 53 kDa protein, shelterin telomere repeat binding 1 and 2, DNA repair, telomere length and redox state in the quadriceps muscle. Fifteen 49-week-old male rats were divided into three groups: control, dynamic resistance training, and isometric resistance training. Dynamic and isometric groups completed five sessions per week during 16 weeks at low to moderate intensity (20-70% maximal load). Only dynamic group decreased expression of 53 kDa protein, proteins from shelterin complex, oxidative stress, and improved antioxidant defense. There was no difference among groups regarding telomere length. In conclusion, dynamic resistance training was more effective than isometric in reducing markers of aging and muscle apoptosis in elderly rats. This modality should be considered as valuable tool do counteract the deleterious effects of aging.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Animais , Apoptose , Biomarcadores/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , Genes p53 , Contração Isométrica , Masculino , Músculo Esquelético/citologia , Oxirredução , Estresse Oxidativo , Condicionamento Físico Animal , Ratos Wistar , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/fisiologia
3.
Front Physiol ; 10: 1424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824336

RESUMO

BACKGROUND: The pre-exhaustion (PreEx) method is used as a resistance training (RT) method to increase muscle mass, yet the chronic effects of this method are poorly understood. OBJECTIVE: Although readily prescribed as a RT method for promotion of muscle hypertrophy, few researches give light to gains made after chronic PreEx RT. Therefore, we compared the effects of traditional versus PreEx RT programs on muscle strength, body composition, and muscular hypertrophy in adult males. METHODS: Untrained subjects (age: 31.37 ± 6.83 years; height: 175.29 ± 5.52 cm; body mass: 82.04 ± 13.61 kg; 1RM leg press: 339.86 ± 61.17 kg; 1RM leg extension: 121.71 ± 11.93 kg) were submitted to 9 weeks of RT with weekly sessions. Traditional (TRT) group (n = 12) performed three sets at 45° of leg press exercise at 75% of 1RM, PreEx group (n = 12) completed a set to failure on a leg extension machine prior to the leg press, and the control (CON) group (n = 7) did not train. Maximum strength, muscle thickness, and body composition were analyzed. RESULTS: PreEx group increased in maximal strength on leg press (16 ± 8%) and leg extension (17 ± 11%), while the TRT group improved by 15 ± 9 and 11 ± 4%, respectively. The thickness of the quadriceps muscles increased for both intervention groups. Specifically, the post-training thickness of the vastus lateralis was significantly higher for PreEx (55%) compared to the CON group. The TRT group presented a greater loss of total and thigh fat mass when compared with the PreEx method. These results were found in the presence of a lower training load for the PreEx group. CONCLUSION: The PreEx training can decrease the total training volume while maintaining results in strength and hypertrophy when comparing to TRT. However, TRT may be optimal if the goal is to decrease fat mass.

4.
Front Physiol ; 10: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723416

RESUMO

This study aimed to compare the effects of dynamic (DRT) and isometric (IRT) resistance training on blood glucose, muscle redox capacity, inflammatory state, and muscle strength and hypertrophy. Fifteen 12-week-old male Wistar rats were randomly allocated into three groups: control group (CTL), DRT, and IRT, n = 5 animals per group. The animals were submitted to a maximal weight carried (MWC; every 15 days) and maximum isometric resistance (MIR; pre- and post-training) tests. Both training protocols were performed five times a week during 12 weeks, consisting of one set of eight uninterrupted climbs for 1 min with a 30% overload of MWC. The animals in the IRT group remained under isometry for 1 min. The DRT group experienced greater MWC from pre- to post-training compared to the CTL and IRT groups (p < 0.0001). The DRT and IRT groups displayed similar gains in MIR (p = 0.3658). The DRT group exhibited improved glycemic homeostasis (p = 0.0111), redox (p < 0.0001), and inflammatory (p < 0.0001) balance as compared with CTL and IRT groups. In addition, the improved glycemic profile was associated with an increase in muscle strength and hypertrophy, improvement in redox balance and inflammation status. We conclude that DRT was more effective than IRT on increasing cross-sectional area, but not muscle strength, in parallel to improved blood glucose, inflammatory status, and redox balance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...